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INTRODUCTION
We are interested in a kind of bias in the process of data exploration. In the current exploratory data
analysis (EDA) tools, there is a danger of wandering in the garden of forking paths [5]: analysts trying
alternative paths to explore data and taking “interesting” data patterns as confirmatory, leading to
biased and non-generalizable conclusions. This kind of bias can take the forms of multiple-comparison
problem, overfitting, and more. In previous work, we describe how all of these biases can be considered
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to be the forking paths problem: unaddressed flexibility in data analysis that leads to unreliable
conclusions [14]. The forking paths problem is significant and real: it can be considered as one of the
causes of the replication crisis, and previous participant experiments have caught it in action [17].Author Background
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Our idea and on-going work is to make data exploration more robust to the forking paths problem
in visual analytics. Since visualizations are important exploration tools, we wish to design and evaluate
visual representations that correct for this problem. We want to first identify and then deploy effective
visualization techniques to represent the inherent uncertainty in a dataset. Novel representations
backed by statistical techniques may encourage healthy skepticism about exploratory "insights" from
visualizations. Ultimately, we aim to improve data exploration outcomes, i.e., analysts making more
optimal decisions about "interesting" data patterns.

The forking paths problem: biases from data exploration
The current EDA systems can be dangerous in two ways: 1) they do not surface or adjust for intrinsic
data uncertainty such as sampling error, and 2) they do not explicitly separate exploratory and confir-
matory analyses (no validation). Taking exploratory findings as confirmatory is in theory “destructively
foolish” [15]. In practice, analysts might not clearly distinguish exploratory and confirmatory findings.
Based on an interview study, Alspaugh et al. report that even professional analysts would do ad hoc
exploration even though the analysts are wary of the practice [1].

The implications of the forking paths problem can be profound: it can result in analysis biases, such
as overfitting in model-fitting and multiple comparison problems in NHST1. “p-hacking” is a special1Null hypothesis significance testing
instance of the forking paths problem where researchers hunt for and publish significant p values only
and consequently, multiple important findings in social psychology and beyond failed to be replicated
[12]. Since we believe that the forking paths problem does not typically arise from malicious user
intentions, we envision system designs that steer analysts away from the forking paths problem.
We focus on visual analytics tools, where analysts can select, filter, and zoom into interesting

patterns in the data, e.g. TimeSearcher [7]. However, the convenience of visual analytics can also
exacerbate the forking paths problem. Gotz et al. call visualizations “visual predictive models”, meaning
that the surface value of visualizations are commonly taken as basis for decision-making [6] while in
reality, the visualizations do not portray data uncertainty. As evidence to the forking paths problem,
Zgraggen et al. have shown that when an analyst operates in the NHST framework, unchecked
exploration in visual analytics can lead to higher false discovery rates (FDR) in an experimental
setting [17]. The forking paths problem may also be exacerbated by automatic insight discovery and
recommendation systems, such as SeeDB [16]. These systems might further encourage and enable
analysts to pay attention to interesting but potentially false patterns, which Correll elevates to an
ethical concern [4].
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OUR IDEA: UNBIASING VISUAL ANALYTICS
Given the significance of the forking paths problem, we want EDA systems to convey the bias in
sample data, so that exploratory findings are not easily taken as confirmatory. One proposed way to
curtail the forking paths problem is to use a public blockchain to track all significance tests performed
on a dataset [3]. However, we want to take a more human-centered approach and accommodate more
than NHST methods. Since visualizations are important tools in the data wrangling process [11], we
imagine alternative ways to visualize data in an EDA system such that the forking paths problem
is transparent to the analyst, encouraging healthy skepticism towards potentially biased insights.
Overall, we want a visual analytics system to be “truthful” [2] in enabling insights and decisions.

More concretely, we propose to infuse several statistical techniques into visualizations. We may be
able to discourage analytical biases while hiding technical details such as p-values and false discovery
rates from the users. Our previous work has laid out a design space for visual analytics to address the
forking paths problem, where we disentangle visual/data representation options (annotations and
data transformations) and statistical techniques (regularization and multiple-comparison correction)
[14]. Extending our design space, we also want to incorporate modern uncertainty visualizations and
the bootstrapping statistical technique.

One such modern uncertainty visualizations is hypothetical outcome plots (HOPs) [9]. Instead of a
traditional static visualization, a HOP is an animation where each frame shows one possible data
sample from an underlying distribution, see Figure 1. Uncertainty visualizations such as HOPs have
the same, familiar visual encoding as the traditional visualizations, allowing the system to easily
communicate data uncertainty that arises from the forking paths problem. We can generate each
frame of a HOP with bootstrapping. Bootstrapping is a generalizable technique where the original
dataset is sampled with replacement, creating alternatives of “what the data could have looked like”.

Figure 1: Some frames in a hypotheti-
cal outcome plot. These figures describe
what “jobs added (in 1,000) over twelve
months” could be like, given the model
that assumes job growth is actually con-
stant. Screenshots taken from New York
Times [10].

We are presently building and evaluating an EDA system that employs techniques described above
to mitigate the forking paths problem, as we describe in our previous paper [14]. As recommended
by Hullman et al. [8], we plan to use incentivized decision-making experiments to evaluate different
techniques to address the forking paths problem.

MOTIVATIONS FOR PARTICIPATING IN THIS WORKSHOP
Through the workshop, the authors would like to bring more awareness to the forking paths problem
in data exploration and get feedback on the planned evaluations. Given the broader theme of this
workshop, they are also interested in discussing how knowledge about data science work topics can
inform experimental and design work:

• What are analysts’ incentives to find “interesting” patterns?
• How do analysts make decisions about what to report?
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• How are biased, exploratory insights formed, and how do they propagate through the analysis
pipeline, and ultimately effect real-life decision-making outcomes?

• How can we tell if an analyst’s intention [13] is to conduct exploratory or confirmatory analyses?
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